Suppr超能文献

通过模拟学习实现免实验外骨骼辅助。

Experiment-free exoskeleton assistance via learning in simulation.

机构信息

Lab of Biomechatronics and Intelligent Robotics, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA.

Department of Mechanical Engineering, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA.

出版信息

Nature. 2024 Jun;630(8016):353-359. doi: 10.1038/s41586-024-07382-4. Epub 2024 Jun 12.

Abstract

Exoskeletons have enormous potential to improve human locomotive performance. However, their development and broad dissemination are limited by the requirement for lengthy human tests and handcrafted control laws. Here we show an experiment-free method to learn a versatile control policy in simulation. Our learning-in-simulation framework leverages dynamics-aware musculoskeletal and exoskeleton models and data-driven reinforcement learning to bridge the gap between simulation and reality without human experiments. The learned controller is deployed on a custom hip exoskeleton that automatically generates assistance across different activities with reduced metabolic rates by 24.3%, 13.1% and 15.4% for walking, running and stair climbing, respectively. Our framework may offer a generalizable and scalable strategy for the rapid development and widespread adoption of a variety of assistive robots for both able-bodied and mobility-impaired individuals.

摘要

外骨骼在提高人类运动表现方面具有巨大的潜力。然而,它们的开发和广泛传播受到需要进行长时间的人体测试和手工控制律的限制。在这里,我们展示了一种无需人体实验即可在模拟中学习通用控制策略的无实验方法。我们的模拟学习框架利用了感知动力学的肌肉骨骼和外骨骼模型以及数据驱动的强化学习来弥合模拟和现实之间的差距。所学习的控制器被部署在一个定制的臀部外骨骼上,可以在不同的活动中自动生成辅助,分别降低代谢率 24.3%、13.1%和 15.4%,用于步行、跑步和爬楼梯。我们的框架可以为各种辅助机器人的快速开发和广泛采用提供一种通用且可扩展的策略,这些机器人适用于健全人和行动不便的人。

相似文献

1
Experiment-free exoskeleton assistance via learning in simulation.
Nature. 2024 Jun;630(8016):353-359. doi: 10.1038/s41586-024-07382-4. Epub 2024 Jun 12.
2
Coupled exoskeleton assistance simplifies control and maintains metabolic benefits: A simulation study.
PLoS One. 2022 Jan 5;17(1):e0261318. doi: 10.1371/journal.pone.0261318. eCollection 2022.
4
The exoskeleton expansion: improving walking and running economy.
J Neuroeng Rehabil. 2020 Feb 19;17(1):25. doi: 10.1186/s12984-020-00663-9.
7
Reducing the metabolic energy of walking and running using an unpowered hip exoskeleton.
J Neuroeng Rehabil. 2021 Jun 6;18(1):95. doi: 10.1186/s12984-021-00893-5.
8
Estimating human joint moments unifies exoskeleton control, reducing user effort.
Sci Robot. 2024 Mar 20;9(88):eadi8852. doi: 10.1126/scirobotics.adi8852.
9
Mechanics of walking and running up and downhill: A joint-level perspective to guide design of lower-limb exoskeletons.
PLoS One. 2020 Aug 28;15(8):e0231996. doi: 10.1371/journal.pone.0231996. eCollection 2020.
10
Optimized hip-knee-ankle exoskeleton assistance at a range of walking speeds.
J Neuroeng Rehabil. 2021 Oct 18;18(1):152. doi: 10.1186/s12984-021-00943-y.

引用本文的文献

1
Wearable Robots for Rehabilitation and Assistance of Gait: A Narrative Review.
Ann Rehabil Med. 2025 Aug;49(4):187-195. doi: 10.5535/arm.250093. Epub 2025 Aug 18.
2
Enhanced gastrocnemius-mimicking lower limb powered exoskeleton robot.
J Neuroeng Rehabil. 2025 Aug 4;22(1):175. doi: 10.1186/s12984-025-01703-y.
3
Flexible multichannel muscle impedance sensors for collaborative human-machine interfaces.
Sci Adv. 2025 Jun 27;11(26):eadv3359. doi: 10.1126/sciadv.adv3359.
4
Biomechanics-Informed Mechatronics Design of Comfort-Centered Portable Hip Exoskeleton: Actuator, Wearable Interface, Controller.
IEEE Trans Med Robot Bionics. 2025 May;7(2):687-698. doi: 10.1109/tmrb.2025.3560394. Epub 2025 Apr 15.
5
Learning to suppress tremors: a deep reinforcement learning-enabled soft exoskeleton for Parkinson's patients.
Front Robot AI. 2025 May 21;12:1537470. doi: 10.3389/frobt.2025.1537470. eCollection 2025.
6
Review of sEMG for Exoskeleton Robots: Motion Intention Recognition Techniques and Applications.
Sensors (Basel). 2025 Apr 13;25(8):2448. doi: 10.3390/s25082448.
7
Level-Ground and Stair Adaptation for Hip Exoskeletons Based on Continuous Locomotion Mode Perception.
Cyborg Bionic Syst. 2025 Apr 22;6:0248. doi: 10.34133/cbsystems.0248. eCollection 2025.
9
GaitDynamics: A Generative Foundation Model for Analyzing Human Walking and Running.
Res Sq. 2025 Mar 21:rs.3.rs-6206222. doi: 10.21203/rs.3.rs-6206222/v1.
10
Toward model-based individualized fitting of hip-flexion exosuits for persons with unilateral transfemoral amputation.
Wearable Technol. 2025 Mar 12;6:e16. doi: 10.1017/wtc.2025.5. eCollection 2025.

本文引用的文献

1
Comparing optimized exoskeleton assistance of the hip, knee, and ankle in single and multi-joint configurations.
Wearable Technol. 2021 Nov 24;2:e16. doi: 10.1017/wtc.2021.14. eCollection 2021.
2
Opportunities and challenges in the development of exoskeletons for locomotor assistance.
Nat Biomed Eng. 2023 Apr;7(4):456-472. doi: 10.1038/s41551-022-00984-1. Epub 2022 Dec 22.
3
Electromyography as a surrogate for estimating metabolic energy expenditure during locomotion.
Med Eng Phys. 2022 Nov;109:103899. doi: 10.1016/j.medengphy.2022.103899. Epub 2022 Oct 1.
4
Personalizing exoskeleton assistance while walking in the real world.
Nature. 2022 Oct;610(7931):277-282. doi: 10.1038/s41586-022-05191-1. Epub 2022 Oct 12.
6
Individualization of exosuit assistance based on measured muscle dynamics during versatile walking.
Sci Robot. 2021 Nov 10;6(60):eabj1362. doi: 10.1126/scirobotics.abj1362.
7
Reinforcement Learning and Control of a Lower Extremity Exoskeleton for Squat Assistance.
Front Robot AI. 2021 Jul 19;8:702845. doi: 10.3389/frobt.2021.702845. eCollection 2021.
9
Removing energy with an exoskeleton reduces the metabolic cost of walking.
Science. 2021 May 28;372(6545):957-960. doi: 10.1126/science.aba9947.
10
OpenSim Moco: Musculoskeletal optimal control.
PLoS Comput Biol. 2020 Dec 28;16(12):e1008493. doi: 10.1371/journal.pcbi.1008493. eCollection 2020 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验