Suppr超能文献

膳食钾对肾脏钠转运体的调节。

Regulation of renal Na transporters in response to dietary K.

机构信息

Department of Physiology and Biophysics, Weill Medical College of Cornell University , New York, New York.

Department of Cellular and Molecular Physiology, Yale University , New Haven, Connecticut.

出版信息

Am J Physiol Renal Physiol. 2018 Oct 1;315(4):F1032-F1041. doi: 10.1152/ajprenal.00117.2018. Epub 2018 Jun 20.

Abstract

Changes in the expression of Na transport proteins were measured in the kidneys of mice with increased dietary K intake for 1 wk. The epithelial Na channel (ENaC) was upregulated, with enhanced expression of full-length and cleaved forms of α-ENaC and cleaved γ-ENaC. At the same time, the amount of the NaCl cotransporter NCC and its phosphorylated form decreased by ~50% and ~80%, respectively. The expression of the phosphorylated form of the Na-K-2Cl cotransporter NKCC2 also decreased, despite an increase in overall protein content. The effect was stronger in males (80%) than in females (40%). This implies that less Na is reabsorbed in the thick ascending limb of Henle's loop and distal convoluted tubule along with Cl, whereas more is reabsorbed in the aldosterone-sensitive distal nephron in exchange for secreted K. The abundance of the proximal tubule Na/H exchanger NHE3 decreased by ~40%, with similar effects in males and females. Time-course studies indicated that NCC and NHE3 proteins decreased progressively over 7 days on a high-K diet. Expression of mRNA encoding these proteins increased, implying that the decreased protein levels resulted from decreased rates of synthesis or increased rates of degradation. The potential importance of changes in NHE3, NKCC2, and NCC in promoting K excretion was assessed with a mathematical model. Simulations indicated that decreased NHE3 produced the largest effect. Regulation of proximal tubule Na transport may play a significant role in achieving K homeostasis.

摘要

研究人员在高钾饮食喂养 1 周的小鼠肾脏中测量了钠转运蛋白表达的变化。上皮钠通道(ENaC)上调,全长和裂解形式的α-ENaC 和裂解γ-ENaC 的表达增强。与此同时,NaCl 协同转运蛋白 NCC 的量及其磷酸化形式分别减少了约 50%和 80%。尽管 Na-K-2Cl 协同转运蛋白 NKCC2 的总蛋白含量增加,但磷酸化形式的表达也减少了。这种影响在雄性(80%)中比雌性(40%)更强。这意味着在醛固酮敏感的远端肾单位中,与 Cl 一起,在 Henle 袢升支粗段和远端卷曲小管中再吸收的 Na 减少,而在远端肾单位中再吸收的 Na 增加,以交换分泌的 K。近端小管 Na/H 交换蛋白 NHE3 的丰度降低了约 40%,雄性和雌性的影响相似。时程研究表明,在高钾饮食下,NCC 和 NHE3 蛋白在 7 天内逐渐减少。这些蛋白编码的 mRNA 表达增加,这意味着蛋白水平的降低是由于合成率降低或降解率增加所致。通过数学模型评估了 NHE3、NKCC2 和 NCC 变化在促进 K 排泄方面的潜在重要性。模拟表明,NHE3 的减少产生的影响最大。近端小管 Na 转运的调节可能在实现 K 体内平衡中起重要作用。

相似文献

1
Regulation of renal Na transporters in response to dietary K.
Am J Physiol Renal Physiol. 2018 Oct 1;315(4):F1032-F1041. doi: 10.1152/ajprenal.00117.2018. Epub 2018 Jun 20.
2
Effects of dietary salt on renal Na+ transporter subcellular distribution, abundance, and phosphorylation status.
Am J Physiol Renal Physiol. 2008 Oct;295(4):F1003-16. doi: 10.1152/ajprenal.90235.2008. Epub 2008 Jul 23.
3
Sex-specific adaptations to high-salt diet preserve electrolyte homeostasis with distinct sodium transporter profiles.
Am J Physiol Cell Physiol. 2021 Nov 1;321(5):C897-C909. doi: 10.1152/ajpcell.00282.2021. Epub 2021 Oct 6.
4
Regulation of NHE3, NKCC2, and NCC abundance in kidney during aldosterone escape phenomenon: role of NO.
Am J Physiol Renal Physiol. 2003 Nov;285(5):F843-51. doi: 10.1152/ajprenal.00110.2003. Epub 2003 Jul 1.
5
Solute transport and oxygen consumption along the nephrons: effects of Na+ transport inhibitors.
Am J Physiol Renal Physiol. 2016 Dec 1;311(6):F1217-F1229. doi: 10.1152/ajprenal.00294.2016. Epub 2016 Oct 5.
6
Mouse model of type II Bartter's syndrome. II. Altered expression of renal sodium- and water-transporting proteins.
Am J Physiol Renal Physiol. 2008 Jun;294(6):F1373-80. doi: 10.1152/ajprenal.00613.2007. Epub 2008 Mar 5.
7
Impact of angiotensin II-mediated stimulation of sodium transporters in the nephron assessed by computational modeling.
Am J Physiol Renal Physiol. 2019 Dec 1;317(6):F1656-F1668. doi: 10.1152/ajprenal.00335.2019. Epub 2019 Oct 28.
8
Sex differences in solute transport along the nephrons: effects of Na transport inhibition.
Am J Physiol Renal Physiol. 2020 Sep 1;319(3):F487-F505. doi: 10.1152/ajprenal.00240.2020. Epub 2020 Aug 3.
9
Time course of renal Na-K-ATPase, NHE3, NKCC2, NCC, and ENaC abundance changes with dietary NaCl restriction.
Am J Physiol Renal Physiol. 2002 Oct;283(4):F648-57. doi: 10.1152/ajprenal.00016.2002.
10
Long-term regulation of renal Na-dependent cotransporters and ENaC: response to altered acid-base intake.
Am J Physiol Renal Physiol. 2000 Sep;279(3):F459-67. doi: 10.1152/ajprenal.2000.279.3.F459.

引用本文的文献

2
Potassium-Alkali-Enriched Diet, Hypertension, and Proteinuria following Uninephrectomy.
J Am Soc Nephrol. 2024 Oct 1;35(10):1330-1350. doi: 10.1681/ASN.0000000000000420. Epub 2024 Jun 24.
3
mTORc2 in Distal Convoluted Tubule and Renal K + Excretion during High Dietary K + Intake.
J Am Soc Nephrol. 2024 May 24;35(9):1149-63. doi: 10.1681/ASN.0000000000000406.
4
Angiotensin II hypertension along the female rat tubule: predicted impact on coupled transport of Na and K.
Am J Physiol Renal Physiol. 2023 Dec 1;325(6):F733-F749. doi: 10.1152/ajprenal.00232.2023. Epub 2023 Oct 12.
5
High dietary K intake inhibits proximal tubule transport.
Am J Physiol Renal Physiol. 2023 Aug 1;325(2):F224-F234. doi: 10.1152/ajprenal.00013.2023. Epub 2023 Jun 15.
6
8
Collecting duct renin regulates potassium homeostasis in mice.
Acta Physiol (Oxf). 2023 Jan;237(1):e13899. doi: 10.1111/apha.13899. Epub 2022 Dec 12.
9
Directing two-way traffic in the kidney: A tale of two ions.
J Gen Physiol. 2022 Oct 3;154(10). doi: 10.1085/jgp.202213179. Epub 2022 Sep 1.
10
Regulation of Distal Nephron Transport by Intracellular Chloride and Potassium.
Nephron. 2023;147(3-4):203-211. doi: 10.1159/000526051. Epub 2022 Aug 17.

本文引用的文献

1
Responses of distal nephron Na transporters to acute volume depletion and hyperkalemia.
Am J Physiol Renal Physiol. 2017 Jul 1;313(1):F62-F73. doi: 10.1152/ajprenal.00668.2016. Epub 2017 Mar 29.
2
A mathematical model of the rat kidney: K-induced natriuresis.
Am J Physiol Renal Physiol. 2017 Jun 1;312(6):F925-F950. doi: 10.1152/ajprenal.00536.2016. Epub 2017 Feb 8.
4
SGK1-dependent ENaC processing and trafficking in mice with high dietary K intake and elevated aldosterone.
Am J Physiol Renal Physiol. 2017 Jan 1;312(1):F65-F76. doi: 10.1152/ajprenal.00257.2016. Epub 2016 Jul 13.
5
Regulation of ENaC trafficking in rat kidney.
J Gen Physiol. 2016 Mar;147(3):217-27. doi: 10.1085/jgp.201511533. Epub 2016 Feb 15.
6
Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis.
Kidney Int. 2016 Jan;89(1):127-34. doi: 10.1038/ki.2015.289. Epub 2016 Jan 4.
7
A mathematical model of the rat nephron: glucose transport.
Am J Physiol Renal Physiol. 2015 May 15;308(10):F1098-118. doi: 10.1152/ajprenal.00505.2014. Epub 2015 Feb 18.
8
A mathematical model of rat proximal tubule and loop of Henle.
Am J Physiol Renal Physiol. 2015 May 15;308(10):F1076-97. doi: 10.1152/ajprenal.00504.2014. Epub 2015 Feb 18.
9
Distal convoluted tubule.
Clin J Am Soc Nephrol. 2014 Dec 5;9(12):2147-63. doi: 10.2215/CJN.05920613. Epub 2014 May 22.
10
Modulation of NCC activity by low and high K(+) intake: insights into the signaling pathways involved.
Am J Physiol Renal Physiol. 2014 Jun 15;306(12):F1507-19. doi: 10.1152/ajprenal.00255.2013. Epub 2014 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验