Department of Sociology, University of North Carolina at Chapel Hill.
Carolina Population Center, University of North Carolina at Chapel Hill.
JAMA Netw Open. 2024 Jul 1;7(7):e2427889. doi: 10.1001/jamanetworkopen.2024.27889.
Epigenetic clocks represent molecular evidence of disease risk and aging processes and have been used to identify how social and lifestyle characteristics are associated with accelerated biological aging. However, most research is based on samples of older adults who already have measurable chronic disease.
To investigate whether and how sociodemographic and lifestyle characteristics are associated with biological aging in a younger adult sample across a wide array of epigenetic clock measures.
DESIGN, SETTING, AND PARTICIPANTS: This cohort study was conducted using data from the National Longitudinal Study of Adolescent to Adult Health, a US representative cohort of adolescents in grades 7 to 12 in 1994 followed up for 25 years to 2018 over 5 interview waves. Participants who provided blood samples at wave V (2016-2018) were analyzed, with samples tested for DNA methylation (DNAm) in 2021 to 2024. Data were analyzed from February 2023 to May 2024.
Sociodemographic (sex, race and ethnicity, immigrant status, socioeconomic status, and geographic location) and lifestyle (obesity status by body mass index [BMI] in categories of reference range or underweight [<25], overweight [25 to <30], obesity [30 to <40], and severe obesity [≥40]; exercise level; tobacco use; and alcohol use) characteristics were assessed.
Biological aging assessed from banked blood DNAm using 16 epigenetic clocks.
Data were analyzed from 4237 participants (mean [SD] age, 38.4 [2.0] years; percentage [SE], 51.3% [0.01] female and 48.7% [0.01] male; percentage [SE], 2.7% [<0.01] Asian or Pacific Islander, 16.7% [0.02] Black, 8.7% [0.01] Hispanic, and 71.0% [0.03] White). Sociodemographic and lifestyle factors were more often associated with biological aging in clocks trained to estimate morbidity and mortality (eg, PhenoAge, GrimAge, and DunedinPACE) than clocks trained to estimate chronological age (eg, Horvath). For example, the β for an annual income less than $25 000 vs $100 000 or more was 1.99 years (95% CI, 0.45 to 3.52 years) for PhenoAgeAA, 1.70 years (95% CI, 0.68 to 2.72 years) for GrimAgeAA, 0.33 SD (95% CI, 0.17 to 0.48 SD) for DunedinPACE, and -0.17 years (95% CI, -1.08 to 0.74 years) for Horvath1AA. Lower education, lower income, higher obesity levels, no exercise, and tobacco use were associated with faster biological aging across several clocks; associations with GrimAge were particularly robust (no college vs college or higher: β = 2.63 years; 95% CI, 1.67-3.58 years; lower vs higher annual income: <$25 000 vs ≥$100 000: β = 1.70 years; 95% CI, 0.68-2.72 years; severe obesity vs no obesity: β = 1.57 years; 95% CI, 0.51-2.63 years; no weekly exercise vs ≥5 bouts/week: β = 1.33 years; 95% CI, 0.67-1.99 years; current vs no smoking: β = 7.16 years; 95% CI, 6.25-8.07 years).
This study found that important social and lifestyle factors were associated with biological aging in a nationally representative cohort of younger adults. These findings suggest that molecular processes underlying disease risk may be identified in adults entering midlife before disease is manifest and inform interventions aimed at reducing social inequalities in heathy aging and longevity.
表观遗传时钟代表疾病风险和衰老过程的分子证据,并已被用于识别社会和生活方式特征如何与加速的生物衰老相关。然而,大多数研究都是基于已经存在可测量的慢性疾病的老年成年人样本。
研究在广泛的表观遗传时钟测量中,社会人口统计学和生活方式特征是否以及如何与年轻成年人样本的生物衰老相关。
设计、设置和参与者:本队列研究使用了美国青少年到成人健康纵向研究的数据,这是一项具有代表性的美国队列研究,包括 1994 年 7 至 12 年级的青少年,在 5 次访谈波中进行了 25 年的随访,直至 2018 年。对在第五次波(2016-2018 年)提供血液样本的参与者进行了分析,在 2021 年至 2024 年期间对这些样本进行了 DNA 甲基化(DNAm)测试。数据分析于 2023 年 2 月至 2024 年 5 月进行。
社会人口统计学(性别、种族和民族、移民身份、社会经济地位和地理位置)和生活方式(体重指数 [BMI] 类别中的肥胖状况[参考范围或体重不足 [<25]、超重[25 至 <30]、肥胖[30 至 <40]和严重肥胖[≥40];运动水平;吸烟和饮酒)特征进行了评估。
使用 16 个表观遗传时钟从储存的血液 DNAm 中评估生物衰老。
对 4237 名参与者(平均[标准差]年龄,38.4[2.0]岁;百分比[标准差],51.3%[0.01]女性和 48.7%[0.01]男性;百分比[标准差],2.7%[<0.01]亚洲或太平洋岛民、16.7%[0.02]黑人、8.7%[0.01]西班牙裔和 71.0%[0.03]白人)的数据进行了分析。在估计发病率和死亡率的时钟(例如,PhenoAge、GrimAge 和 DunedinPACE)中,社会人口统计学和生活方式因素与生物衰老的相关性强于估计年龄的时钟(例如,Horvath)。例如,年收入低于 25000 美元与年收入 100000 美元或以上相比,在 PhenoAgeAA 中为 1.99 年(95%CI,0.45 年至 3.52 年),在 GrimAgeAA 中为 1.70 年(95%CI,0.68 年至 2.72 年),在 DunedinPACE 中为 0.33 SD(95%CI,0.17 年至 0.48 SD),在 Horvath1AA 中为-0.17 年(95%CI,-1.08 年至 0.74 年)。较低的教育程度、较低的收入、较高的肥胖水平、缺乏运动和吸烟与多个时钟的生物衰老速度加快有关;与 GrimAge 的关联尤为显著(未上过大学与上过大学或以上:β=2.63 年;95%CI,1.67-3.58 年;年收入低于 25000 美元与高于 100000 美元:β=1.70 年;95%CI,0.68-2.72 年;严重肥胖与非肥胖:β=1.57 年;95%CI,0.51-2.63 年;每周无运动与每周运动≥5 次:β=1.33 年;95%CI,0.67-1.99 年;当前吸烟与不吸烟:β=7.16 年;95%CI,6.25-8.07 年)。
本研究发现,重要的社会和生活方式因素与年轻成年人的全国代表性队列的生物衰老有关。这些发现表明,在疾病表现之前,可能会在进入中年的成年人中发现疾病风险的潜在分子过程,并为旨在减少健康衰老和长寿方面的社会不平等的干预措施提供信息。