Suppr超能文献

用于抗菌肽鉴定与设计的机器学习

Machine learning for antimicrobial peptide identification and design.

作者信息

Wan Fangping, Wong Felix, Collins James J, de la Fuente-Nunez Cesar

机构信息

Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Nat Rev Bioeng. 2024 May;2(5):392-407. doi: 10.1038/s44222-024-00152-x. Epub 2024 Feb 26.

Abstract

Artificial intelligence (AI) and machine learning (ML) models are being deployed in many domains of society and have recently reached the field of drug discovery. Given the increasing prevalence of antimicrobial resistance, as well as the challenges intrinsic to antibiotic development, there is an urgent need to accelerate the design of new antimicrobial therapies. Antimicrobial peptides (AMPs) are therapeutic agents for treating bacterial infections, but their translation into the clinic has been slow owing to toxicity, poor stability, limited cellular penetration and high cost, among other issues. Recent advances in AI and ML have led to breakthroughs in our abilities to predict biomolecular properties and structures and to generate new molecules. The ML-based modelling of peptides may overcome some of the disadvantages associated with traditional drug discovery and aid the rapid development and translation of AMPs. Here, we provide an introduction to this emerging field and survey ML approaches that can be used to address issues currently hindering AMP development. We also outline important limitations that can be addressed for the broader adoption of AMPs in clinical practice, as well as new opportunities in data-driven peptide design.

摘要

人工智能(AI)和机器学习(ML)模型正在社会的许多领域得到应用,并且最近已进入药物发现领域。鉴于抗菌药物耐药性的日益普遍,以及抗生素开发固有的挑战,迫切需要加快新型抗菌疗法的设计。抗菌肽(AMPs)是治疗细菌感染的治疗剂,但由于毒性、稳定性差、细胞穿透性有限和成本高等问题,它们转化为临床应用的速度一直很慢。AI和ML的最新进展已使我们在预测生物分子特性和结构以及生成新分子的能力方面取得了突破。基于ML的肽建模可能会克服与传统药物发现相关的一些缺点,并有助于AMPs的快速开发和转化。在此,我们介绍这一新兴领域,并概述可用于解决当前阻碍AMPs开发问题的ML方法。我们还概述了为使AMPs在临床实践中更广泛应用而可解决的重要局限性,以及数据驱动肽设计中的新机遇。

相似文献

1
Machine learning for antimicrobial peptide identification and design.
Nat Rev Bioeng. 2024 May;2(5):392-407. doi: 10.1038/s44222-024-00152-x. Epub 2024 Feb 26.
2
Advances in Antimicrobial Peptide Discovery via Machine Learning and Delivery via Nanotechnology.
Microorganisms. 2023 Apr 26;11(5):1129. doi: 10.3390/microorganisms11051129.
3
Innovative Strategies and Methodologies in Antimicrobial Peptide Design.
J Funct Biomater. 2024 Oct 29;15(11):320. doi: 10.3390/jfb15110320.
4
Advancements in peptide-based antimicrobials: A possible option for emerging drug-resistant infections.
Adv Colloid Interface Sci. 2024 Nov;333:103282. doi: 10.1016/j.cis.2024.103282. Epub 2024 Sep 6.
5
Artificial intelligence-driven antimicrobial peptide discovery.
Curr Opin Struct Biol. 2023 Dec;83:102733. doi: 10.1016/j.sbi.2023.102733. Epub 2023 Nov 21.
6
Combining genetic algorithm with machine learning strategies for designing potent antimicrobial peptides.
BMC Bioinformatics. 2021 May 11;22(1):239. doi: 10.1186/s12859-021-04156-x.
7
Progress in the Identification and Design of Novel Antimicrobial Peptides Against Pathogenic Microorganisms.
Probiotics Antimicrob Proteins. 2025 Apr;17(2):918-936. doi: 10.1007/s12602-024-10402-4. Epub 2024 Nov 18.
8
Emerging Computational Approaches for Antimicrobial Peptide Discovery.
Antibiotics (Basel). 2022 Jul 13;11(7):936. doi: 10.3390/antibiotics11070936.
9
Design methods for antimicrobial peptides with improved performance.
Zool Res. 2023 Nov 18;44(6):1095-1114. doi: 10.24272/j.issn.2095-8137.2023.246.
10
AI Methods for Antimicrobial Peptides: Progress and Challenges.
Microb Biotechnol. 2025 Jan;18(1):e70072. doi: 10.1111/1751-7915.70072.

引用本文的文献

2
Ai-driven de novo design of customizable membrane permeable cyclic peptides.
J Comput Aided Mol Des. 2025 Aug 9;39(1):63. doi: 10.1007/s10822-025-00639-8.
3
Carbapenem Resistance in : Mechanisms, Therapeutics, and Innovations.
Microorganisms. 2025 Jun 27;13(7):1501. doi: 10.3390/microorganisms13071501.
4
Deep learning unlocks antimicrobial self-assembling peptides.
Nat Mater. 2025 Aug;24(8):1168-1169. doi: 10.1038/s41563-025-02299-3.
8
Heterologous Expression and Antimicrobial Mechanism of a Cysteine-Rich Peptide from Barnacle .
Microorganisms. 2025 Jun 13;13(6):1381. doi: 10.3390/microorganisms13061381.
9
Whey Proteins and Bioactive Peptides: Advances in Production, Selection and Bioactivity Profiling.
Biomedicines. 2025 May 27;13(6):1311. doi: 10.3390/biomedicines13061311.
10
Machine Learning-Enhanced Nanoparticle Design for Precision Cancer Drug Delivery.
Adv Sci (Weinh). 2025 Aug;12(30):e03138. doi: 10.1002/advs.202503138. Epub 2025 Jun 19.

本文引用的文献

2
Discovery of a structural class of antibiotics with explainable deep learning.
Nature. 2024 Feb;626(7997):177-185. doi: 10.1038/s41586-023-06887-8. Epub 2023 Dec 20.
3
Discovery of antibiotics that selectively kill metabolically dormant bacteria.
Cell Chem Biol. 2024 Apr 18;31(4):712-728.e9. doi: 10.1016/j.chembiol.2023.10.026. Epub 2023 Nov 28.
4
Molecular de-extinction of ancient antimicrobial peptides enabled by machine learning.
Cell Host Microbe. 2023 Aug 9;31(8):1260-1274.e6. doi: 10.1016/j.chom.2023.07.001. Epub 2023 Jul 28.
5
Leveraging artificial intelligence in the fight against infectious diseases.
Science. 2023 Jul 14;381(6654):164-170. doi: 10.1126/science.adh1114. Epub 2023 Jul 13.
6
7
Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii.
Nat Chem Biol. 2023 Nov;19(11):1342-1350. doi: 10.1038/s41589-023-01349-8. Epub 2023 May 25.
8
Discovering small-molecule senolytics with deep neural networks.
Nat Aging. 2023 Jun;3(6):734-750. doi: 10.1038/s43587-023-00415-z. Epub 2023 May 4.
9
Protein Design Using Physics Informed Neural Networks.
Biomolecules. 2023 Mar 1;13(3):457. doi: 10.3390/biom13030457.
10
Evolutionary-scale prediction of atomic-level protein structure with a language model.
Science. 2023 Mar 17;379(6637):1123-1130. doi: 10.1126/science.ade2574. Epub 2023 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验