Suppr超能文献

T细胞中剪接的共价靶向

Covalent targeting of splicing in T cells.

作者信息

Scott Kevin A, Kojima Hiroyuki, Ropek Nathalie, Warren Charles D, Zhang Tiffany L, Hogg Simon J, Sanford Henry, Webster Caroline, Zhang Xiaoyu, Rahman Jahan, Melillo Bruno, Cravatt Benjamin F, Lyu Jiankun, Abdel-Wahab Omar, Vinogradova Ekaterina V

机构信息

Department of Chemical Immunology and Proteomics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.

Department of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, New York, NY 10021, USA.

出版信息

Cell Chem Biol. 2025 Jan 16;32(1):201-218.e17. doi: 10.1016/j.chembiol.2024.10.010. Epub 2024 Nov 25.

Abstract

Despite significant interest in therapeutic targeting of splicing, few chemical probes are available for the proteins involved in splicing. Here, we show that elaborated stereoisomeric acrylamide EV96 and its analogues lead to a selective T cell state-dependent loss of interleukin 2-inducible T cell kinase (ITK) by targeting one of the core splicing factors SF3B1. Mechanistic investigations suggest that the state-dependency stems from a combination of differential protein turnover rates and extensive ITK mRNA alternative splicing. We further introduce the most comprehensive list to date of proteins involved in splicing and leverage cysteine- and protein-directed activity-based protein profiling with electrophilic scout fragments to demonstrate covalent ligandability for many classes of splicing factors and splicing regulators in T cells. Taken together, our findings show how chemical perturbation of splicing can lead to immune state-dependent changes in protein expression and provide evidence for the broad potential to target splicing factors with covalent chemistry.

摘要

尽管对剪接的治疗靶向有很大兴趣,但针对参与剪接的蛋白质的化学探针却很少。在这里,我们表明,精心设计的立体异构丙烯酰胺EV96及其类似物通过靶向核心剪接因子之一SF3B1,导致白细胞介素2诱导型T细胞激酶(ITK)在T细胞状态依赖性下选择性丧失。机制研究表明,这种状态依赖性源于不同的蛋白质周转率和广泛的ITK mRNA可变剪接的组合。我们进一步介绍了迄今为止最全面的参与剪接的蛋白质列表,并利用基于亲电侦察片段的基于活性的半胱氨酸和蛋白质定向蛋白质谱分析,以证明T细胞中许多类别的剪接因子和剪接调节因子的共价配体性。综上所述,我们的研究结果表明剪接的化学扰动如何导致蛋白质表达的免疫状态依赖性变化,并为用共价化学靶向剪接因子的广泛潜力提供了证据。

相似文献

1
Covalent targeting of splicing in T cells.
Cell Chem Biol. 2025 Jan 16;32(1):201-218.e17. doi: 10.1016/j.chembiol.2024.10.010. Epub 2024 Nov 25.
2
Covalent Targeting of Splicing in T Cells.
bioRxiv. 2023 Dec 18:2023.12.18.572199. doi: 10.1101/2023.12.18.572199.
3
Splicing factor SF3B1 promotes endometrial cancer progression via regulating KSR2 RNA maturation.
Cell Death Dis. 2020 Oct 10;11(10):842. doi: 10.1038/s41419-020-03055-y.
4
Cardiomyocyte-Specific Long Noncoding RNA Regulates Alternative Splicing of the Triadin Gene in the Heart.
Circulation. 2022 Aug 30;146(9):699-714. doi: 10.1161/CIRCULATIONAHA.121.058017. Epub 2022 Jul 18.
5
Cancer-associated SF3B1 mutation K700E causes widespread changes in U2/branchpoint recognition without altering splicing.
Proc Natl Acad Sci U S A. 2025 Apr;122(13):e2423776122. doi: 10.1073/pnas.2423776122. Epub 2025 Mar 26.
7
Splicing factor deficits render hematopoietic stem and progenitor cells sensitive to STAT3 inhibition.
Cell Rep. 2022 Dec 13;41(11):111825. doi: 10.1016/j.celrep.2022.111825.
9
Functional analysis of the zinc finger modules of the splicing factor Luc7.
RNA. 2024 Jul 16;30(8):1058-1069. doi: 10.1261/rna.079956.124.

引用本文的文献

2
Covalent Destabilizing Degrader of AR and AR-V7 in Androgen-Independent Prostate Cancer Cells.
bioRxiv. 2025 Feb 16:2025.02.12.637117. doi: 10.1101/2025.02.12.637117.
3
Exploiting the DCAF16-SPIN4 interaction to identify DCAF16 ligands for PROTAC development.
RSC Med Chem. 2024 Dec 6;16(2):892-906. doi: 10.1039/d4md00681j. eCollection 2025 Feb 19.

本文引用的文献

1
Proteomic discovery of chemical probes that perturb protein complexes in human cells.
Mol Cell. 2023 May 18;83(10):1725-1742.e12. doi: 10.1016/j.molcel.2023.03.026. Epub 2023 Apr 20.
2
ITK degradation to block T cell receptor signaling and overcome therapeutic resistance in T cell lymphomas.
Cell Chem Biol. 2023 Apr 20;30(4):383-393.e6. doi: 10.1016/j.chembiol.2023.03.007. Epub 2023 Apr 3.
3
SF3B1 mutations in myelodysplastic syndromes: A potential therapeutic target for modulating the entire disease process.
Front Oncol. 2023 Mar 17;13:1116438. doi: 10.3389/fonc.2023.1116438. eCollection 2023.
4
Remodeling oncogenic transcriptomes by small molecules targeting NONO.
Nat Chem Biol. 2023 Jul;19(7):825-836. doi: 10.1038/s41589-023-01270-0. Epub 2023 Mar 2.
5
Annotation of biologically relevant ligands in UniProtKB using ChEBI.
Bioinformatics. 2023 Jan 1;39(1). doi: 10.1093/bioinformatics/btac793.
6
CORUM: the comprehensive resource of mammalian protein complexes-2022.
Nucleic Acids Res. 2023 Jan 6;51(D1):D539-D545. doi: 10.1093/nar/gkac1015.
7
RNA Metabolism in T Lymphocytes.
Immune Netw. 2022 Oct 7;22(5):e39. doi: 10.4110/in.2022.22.e39. eCollection 2022 Oct.
8
InterPro in 2022.
Nucleic Acids Res. 2023 Jan 6;51(D1):D418-D427. doi: 10.1093/nar/gkac993.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验