Suppr超能文献

通过 microRNAs 对人成纤维细胞向神经元的逐步命运转变进行解构。

Deconstructing Stepwise Fate Conversion of Human Fibroblasts to Neurons by MicroRNAs.

机构信息

Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Molecular Genetics and Genomics, Washington University School of Medicine, St. Louis, MO 63110, USA.

Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Computational and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.

出版信息

Cell Stem Cell. 2021 Jan 7;28(1):127-140.e9. doi: 10.1016/j.stem.2020.08.015. Epub 2020 Sep 21.

Abstract

Cell-fate conversion generally requires reprogramming effectors to both introduce fate programs of the target cell type and erase the identity of starting cell population. Here, we reveal insights into the activity of microRNAs miR-9/9 and miR-124 (miR-9/9-124) as reprogramming agents that orchestrate direct conversion of human fibroblasts into motor neurons by first eradicating fibroblast identity and promoting uniform transition to a neuronal state in sequence. We identify KLF-family transcription factors as direct target genes for miR-9/9-124 and show their repression is critical for erasing fibroblast fate. Subsequent gain of neuronal identity requires upregulation of a small nuclear RNA, RN7SK, which induces accessibilities of chromatin regions and neuronal gene activation to push cells to a neuronal state. Our study defines deterministic components in the microRNA-mediated reprogramming cascade.

摘要

细胞命运转变通常需要重新编程效应器,既要引入目标细胞类型的命运程序,又要抹去起始细胞群体的身份。在这里,我们揭示了 microRNAs miR-9/9 和 miR-124(miR-9/9-124)作为重编程剂的作用机制,这些 microRNAs 可以通过首先消除成纤维细胞的身份,并依次促进向神经元状态的均匀转变,协调将人成纤维细胞直接转化为运动神经元。我们确定 KLF 家族转录因子是 miR-9/9-124 的直接靶基因,并表明它们的抑制对于消除成纤维细胞命运至关重要。随后获得神经元身份需要上调小核 RNA RN7SK,它诱导染色质区域的可及性和神经元基因激活,将细胞推向神经元状态。我们的研究定义了 microRNA 介导的重编程级联中的确定性成分。

相似文献

1
Deconstructing Stepwise Fate Conversion of Human Fibroblasts to Neurons by MicroRNAs.
Cell Stem Cell. 2021 Jan 7;28(1):127-140.e9. doi: 10.1016/j.stem.2020.08.015. Epub 2020 Sep 21.
2
Generation of Human Neurons by microRNA-Mediated Direct Conversion of Dermal Fibroblasts.
Methods Mol Biol. 2021;2239:77-100. doi: 10.1007/978-1-0716-1084-8_6.
4
MicroRNAs and Ascl1 facilitate direct conversion of porcine fibroblasts into induced neurons.
Stem Cell Res. 2020 Oct;48:101984. doi: 10.1016/j.scr.2020.101984. Epub 2020 Sep 7.
6
Reprogramming human fibroblasts to neurons by recapitulating an essential microRNA-chromatin switch.
Curr Opin Genet Dev. 2013 Oct;23(5):591-8. doi: 10.1016/j.gde.2013.07.001.
7
Mechanistic Insights Into MicroRNA-Induced Neuronal Reprogramming of Human Adult Fibroblasts.
Front Neurosci. 2018 Aug 2;12:522. doi: 10.3389/fnins.2018.00522. eCollection 2018.
8
MicroRNA-mediated conversion of human fibroblasts to neurons.
Nature. 2011 Jul 13;476(7359):228-31. doi: 10.1038/nature10323.
9
Cellular reprogramming of diabetic foot ulcer fibroblasts triggers pro-healing miRNA-mediated epigenetic signature.
Exp Dermatol. 2021 Aug;30(8):1065-1072. doi: 10.1111/exd.14405. Epub 2021 Jun 11.
10
Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits.
Cell. 2013 Jan 17;152(1-2):82-96. doi: 10.1016/j.cell.2012.11.045. Epub 2013 Jan 11.

引用本文的文献

1
Proliferation history and transcription factor levels drive direct conversion to motor neurons.
Cell Syst. 2025 Apr 16;16(4):101205. doi: 10.1016/j.cels.2025.101205. Epub 2025 Mar 13.
2
Serum-tolerant polymeric complex for stem-cell transfection and neural differentiation.
Nat Commun. 2025 Feb 27;16(1):2022. doi: 10.1038/s41467-025-57278-8.
3
The effect of LARP7 on gene expression during osteogenesis.
Mol Biol Rep. 2025 Jan 13;52(1):120. doi: 10.1007/s11033-024-10216-1.
4
Fate erasure logic of gene networks underlying direct neuronal conversion of somatic cells by microRNAs.
Cell Rep. 2025 Jan 28;44(1):115153. doi: 10.1016/j.celrep.2024.115153. Epub 2025 Jan 4.
5
Epigenetic Dynamics in Reprogramming to Dopaminergic Neurons for Parkinson's Disease.
Adv Sci (Weinh). 2024 Nov;11(41):e2403105. doi: 10.1002/advs.202403105. Epub 2024 Sep 16.
6
Modeling late-onset Alzheimer's disease neuropathology via direct neuronal reprogramming.
Science. 2024 Aug 2;385(6708):adl2992. doi: 10.1126/science.adl2992.
10
Parallel gene size and isoform expansion of ancient neuronal genes.
Curr Biol. 2024 Apr 22;34(8):1635-1645.e3. doi: 10.1016/j.cub.2024.02.021. Epub 2024 Mar 8.

本文引用的文献

1
Reversing a model of Parkinson's disease with in situ converted nigral neurons.
Nature. 2020 Jun;582(7813):550-556. doi: 10.1038/s41586-020-2388-4. Epub 2020 Jun 24.
2
Intron and gene size expansion during nervous system evolution.
BMC Genomics. 2020 May 14;21(1):360. doi: 10.1186/s12864-020-6760-4.
3
Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice.
Cell. 2020 Apr 30;181(3):590-603.e16. doi: 10.1016/j.cell.2020.03.024. Epub 2020 Apr 8.
4
Mitigating Antagonism between Transcription and Proliferation Allows Near-Deterministic Cellular Reprogramming.
Cell Stem Cell. 2019 Oct 3;25(4):486-500.e9. doi: 10.1016/j.stem.2019.08.005. Epub 2019 Sep 12.
5
Comprehensive Integration of Single-Cell Data.
Cell. 2019 Jun 13;177(7):1888-1902.e21. doi: 10.1016/j.cell.2019.05.031. Epub 2019 Jun 6.
7
Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.
Nat Commun. 2019 Apr 3;10(1):1523. doi: 10.1038/s41467-019-09234-6.
8
Dimensionality reduction for visualizing single-cell data using UMAP.
Nat Biotechnol. 2018 Dec 3. doi: 10.1038/nbt.4314.
9
Single-cell mapping of lineage and identity in direct reprogramming.
Nature. 2018 Dec;564(7735):219-224. doi: 10.1038/s41586-018-0744-4. Epub 2018 Dec 5.
10
RNA velocity of single cells.
Nature. 2018 Aug;560(7719):494-498. doi: 10.1038/s41586-018-0414-6. Epub 2018 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验